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The quantum-classical crossover of the escape rate is studied in magnetic nanoparticles with truly axial
symmetry and a large spin within the framework of the quasiclassical approach. The nonlinear perturbation
method is employed to obtain the crossover diagram for first- and second-order crossovers. It is found that the
regime for the first-order crossover is greatly enhanced or suppressed depending on the sign of the higher-order
axial term, while it is greatly suppressed by the external magnetic field. These features can be tested experi-
mentally in magnetic nanosystems.
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I. INTRODUCTION

Investigations of the macroscopic quantum tunneling in
nanospin systems have been a topical issue of intensive the-
oretical and experimental studies over the past few years.1

One good subject is a quantum-classical crossover in mag-
netic nanoparticles with the magnetization M whose direc-
tion is subject to the magnetocrystalline anisotropy. At suffi-
ciently high temperature the direction of M is changed by
thermal activation and its rate � obeys the Arrhenius law �
�exp�−U /kBT� with U being the height of the energy bar-
rier, whereas at temperature close to absolute zero, pure
quantum tunneling is relevant and ��exp�−S /��, with S the
action at zero temperature. Thus the crossover temperature
Tc is expected to exist between the thermal activation and
quantum tunneling. Whether the two regimes smoothly join
or not around Tc has been a great deal of interest.

The abrupt �first-order crossover�FC�� or gradual �second-
order crossover�SC�� crossover for the escape rate around Tc
was raised by Chudnovsky,2 who studied the oscillation pe-
riod ��E� of the instanton where E is the energy of the in-
stanton. Later, Chudnovsky and Garanin3 proposed the cross-
over issue in the longitudinal anisotropy system with an
external transverse magnetic field. Since then, theoretical
studies of the crossover in nanospin systems have been per-
formed by many groups.4–12 However, most of the theoreti-
cal investigations have been studied for the spin Hamiltonian
without the higher-order term in anisotropy energy. In fact,
such a term is of utmost importance of the quantum resonant
tunneling,13 quantum phase interference14 and quantum-
classical crossover in single-molecule magnets �SMMs�.15

Recently, Kang and Kim16 studied the crossover for the mod-
erate spin system �S�10� with such a higher-order term by
using a direct numerical approach, and found that such a
term plays an important role in the crossover of the escape
rate in SMMs. Thus the theoretical investigation of the cross-
over in SMMs is well understood. A lot of magnetic nano-
materials, however, have such higher-order term with a large
spin value �S�10�, which might result in deviations from
the previous results. Indeed, since it is not possible to per-
form the numerical calculation for S→�, one has to look for
alternative approach. Actually, many theoretical studies have
been performed on nanospin systems with a large spin, by
using a mapping of the spin problem onto a particle one and

periodic instantons.3–10 However, such methods cannot be
applied to the systems higher than the second-order in the
anisotropy energy, because there are no one-dimensional
functional forms of the actions in such cases. Thus we make
use of a theoretical method for dealing with the crossover in
general nanospin systems by employing nonlinear perturba-
tion near the top of the barrier based on the spin-coherent-
state path integral method.17 We show that the crossover
boundary is greatly influenced by the higher-order term in
the anisotropy energy and the regime for the first-order
crossover becomes more pronounced in the limit of a large
spin compared with the moderate spin such as SMMs.

The rest of the article is organized as follows. In Sec. II,
we reformulate the quasiclassical theory of the spin-
coherent-state path integral in terms of nonlinear perturba-
tion method. In Sec. III, we consider the uniaxial systems
with the higher-order axial term in the presence of transverse
and longitudinal fields, and present the dependence of the
crossover boundary on the ratio of two anisotropy constants.
Also, a comparison of quasiclassical results will be made
with previous numerical results. The conclusions are given in
Sec. IV.

II. BASIC FORMALISM

The spin-coherent-state path integral approach to the
quantum tunneling of magnetization makes use of the fol-
lowing expression for the partition function given by

Z���� = � D�M����exp�− SE/�� , �1�

where �=1 /kBT, the path sum is over all periodic paths of
the magnetization M���=M��+���, and SE the action which
includes the Euclidean version of the magnetic Lagrangian
LE as

SE��,	� = V� d��i
M



�1 − cos ��

d	

d�
+ E��,	�	 , �2�

where V is a volume of the particle, M the magnitude of
magnetization, 
=g�B /� the gyromagnetic ratio, �B the
Bohr magneton, and �, 	 spherical coordinates of the mag-
netization. Also, E�� ,	� is the total energy which is com-
posed of the anisotropy energy and the energy given by an
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external magnetic field. The classical trajectory of � and 	 is
determined by

in	̇ sin � = − E�, in�̇ sin � = E	, �3�

where n=M /
, 	̇=d	 /d�, �̇=d� /d�, E�=�E /��, and E	

=�E /�	. Employing the perturbation method for the crite-
rion of FC or SC, the classical trajectory of � �	� is decom-

posed into the position of the barrier �̄ �	̄� and a fluctuation

term �� ��	�, i.e., �= �̄+�� �	= 	̄+�	� for the behavior of
the weakly time-dependent solutions. The solutions of the
equation of motion are parametrized by the amplitude a of
the oscillations, which quantifies the difference between the
thermal and the time-dependent solutions near the top of the
barrier. Our goal is to solve Eq. �3� for ����� and �	��� and
find the correction to the oscillation period away from the
thermal saddle point. Denoting �����
������ ,�	����, we
have ����+���=����� at finite temperature and write it as
Fourier series �����=� j=−�

� �� j exp�i
̃ j�� where 
̃ j

=2�j /�� and �=1 /kBT. Proceeding the perturbation of ��,
we will obtain the correction �
�

−
0� at higher order
where 
0 is a small oscillation frequency in the lowest order
near the top of the barrier. According to the Chudnovsky’s
criterion,2 we have �
�0 for FC and �
�0 for SC. Thus
we will discuss whether the corrected frequency 
 is greater
than the frequency 
0 or not.

Before we get into a discussion of the specific form of the
anisotropy, we consider an arbitrary anisotropy energy with a
constant easy plane, e.g., 	=0 which can be useful for a

situation like higher-order or general symmetries. Writing �̄
=�0, Eq. �3� is expressed in terms of �� and �	, which
results in

in��	̇� + A1���� + A2����2 + A3��	�2 + A4����3

+ A5������	�2 = 0, �4�

in���̇� + B1��	� + B2������	� + B3��	�3 + B4����2��	� = 0,

�5�

where �	̇=d��	� /d�, ��̇=d���� /d�, and

A1 = E�� csc �0, A2 =
1

2
E��� csc �0 − E�� cot �0 csc �0,

�6�

A3 =
1

2
E		� csc �0,

A4 =
1

6
E���� csc �0 −

1

2
E��� cot �0 csc �0

+ E���1

2
+ cot2 �0
csc �0, �7�

A5 =
1

2
E��		 csc �0 −

1

2
E		� cot �0 csc �0, �8�

B1 = − E		 csc �0, �9�

B2 = − E�		 csc �0 + E		 cot �0 csc �0,

B3 = −
1

6
E				 csc �0,

B4 = −
1

2
E��		 csc �0 + E�		 cot �0 csc �0

− E		�1

2
+ cot2 �0
csc �0. �10�

Further, it is introduced that E��= ��2E /��2��=�0,	=0, E		�

= ��3E /�	2����=�0,	=0, and so on. Considering the system in
which �� is real and �	 imaginary, we can write ��
�a�1 cos�
�� and �	� ia	1 sin�
�� to lowest order in per-
turbation theory. Substituting them into Eqs. �4� and �5�
while neglecting terms of order higher than a, we obtain

	1

�1
=

A1

n

=

n


B1
, �11�

which give rise to the solution 
=
0=�A1B1 /n.
In order to find the change of the oscillation frequency, we

need to investigate Eqs. �4� and �5� by choosing ��
�a�1 cos�
��+��2, and �	� ia	1 sin�
��+ i�	2, where
��2 and �	2 are of the order of a2. Neglecting terms of order
higher than a2, we find 
=
0, and the corresponding pertur-
bations ��2=a2�1

2�t1+ t2 cos�2
��� and �	2=a2�1
2�f1

+ f2 sin�2
��� with

t1 =
A1A3 − A2B1

2A1B1
, �12�

t2 =
2A1B2 + A2B1 + A1A3

6A1B1
, �13�

f1 = 0, �14�

f2 =
A1B2 + 2A2B1 + 2A1A3

6n
0B1
. �15�

Since the oscillation frequency does not change in this order,
the higher order should be taken into account by writing
���a�1 cos�
��+��2+��3, and �	� ia	1 sin�
��+ i�	2

+ i�	3, where ��2 and �	2 are of the order of a3. Inserting
them again into Eqs. �4� and �5� and retaining only terms up
to O�a3�, we have for the shift of the oscillation frequency


2 − 
0
2 = �a�1

n

2

�g1 + g2 + g3� , �16�

where

g1 = 2A2B1�t1 +
1

2
t2
 − A3�f2n
0� , �17�

g2 =
1

2
B2�f2n
0� + A1B2�t1 −

1

2
t2
 , �18�
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g3 =
1

4
�3A4B1 − A1A5 + A1B4 − 3

A1
2B3

B1

 . �19�

As mentioned previously, if the oscillation period
��=2� /
� is not a monotonic function of a where a is a
function of E, the system exhibits FC. Thus the period � in
Eq. �16� should be less than �0�=2� /
0�, i.e., 
�
0 for FC
and 
�
0 for SC. It implies that g1+g2+g3�0 �or �0� for
FC �or SC�, and thereby g1+g2+g3=0 determines the cross-
over boundary between FC and SC.

III. QUANTUM-CLASSICAL CROSSOVER IN MAGNETIC
NANOSYSTEMS WITH AXIAL SYMMETRY

Now let us apply the formalism developed in Sec. II to the
crossover for the nanospin system described by the Hamil-
tonian with quartic longitudinal anisotropy

E��,	� = − DSz
2 − ASz

4 − g�BHzSz + Etrans, �20�

where Si �i=x ,y ,z� are three compounds of the spin operator,
D is the second-order and A the fourth-order longitudinal
anisotorpy constants, the third term is the Zeeman energy
related with a longitudinal field Hz, and the last term �Etrans�
describes transverse terms containing Sx or Sy spin operators.
In general Etrans includes the transverse magnetic field and
the transverse anisotropy with the second-or higher-order,
which produce spin tunneling. However, in the ensuing dis-
cussion HxSx, which affects the spin tunneling will be con-
sidered for the sake of simplicity.18 Hence, Hx might play the
role of an effective field which includes not only an external
magnetic field but also an internal magnetic field produced
by the effects of the neglected even order terms in Sx and Sy
of the spin Hamiltonian.

A. Unbiased case

In this case, Hz=0 and the total energy E�� ,	� of the
system is given by

E��,	� = − DS2 cos2 � − AS4 cos4 � − g�BSHx sin � cos 	 .

�21�

Introducing the dimensionless parameter �=AS2 /D
and hx=g�BHx / �2DS�, the reduced energy
E�� ,	��=E�� ,	� / �DS2�� on the easy plane 	=0 �Appendix
A� is written as

E��,	 = 0� = − cos2 � − �cos4 � − 2hx sin � , �22�

which represents a symmetric double-well potential �Fig. 1�.
Noting that the position of the barrier �0=� /2 in Eq. �22�,
we obtain from Eqs. �6�–�10�

A1 = − 2 + 2hx, A2 = A3 = 0, A4 =
1 − 12� + 2hx

3
,

�23�

A5 = − hx,

B1 = − 2hx, B2 = 0, B3 =
hx

3
, B4 = 0. �24�

Substituting them into Eqs. �17�–�19�, the shift of the fre-
quency becomes from Eq. �16�


2 − 
0
2 =

1

2
�a�1

n

2

�1 − 4�1 − 3��hx� , �25�

where 
0=2��1−hx�hx /n. Hence, for ��1 /3, FC occurs in
the range of the transverse field

hx �
1

4�1 − 3��
, �26�

and the crossover boundary becomes

hx =
1

4�1 − 3��
. �27�

Also, in order to find the range of SC, we need to obtain the
magnitude of the critical magnetic field at which the barrier
height between two wells vanishes. Defining �c to be
the angle at which the barrier vanishes by the applied mag-
netic field, from the relations �dE�� ,0� /d���=�c,hx=hxc
= �d2E�� ,0� /d�2��=�c,hx=hxc

=0 we have

sin�2�c� + 4� cos3 �c sin �c − 2hxc cos �c = 0, �28�

cos�2�c� + 2��− 3 cos2 �c sin2 �c + cos4 �c� + hxc sin �c = 0,

�29�

where hxc=g�BHxc / �2DS� and Hxc is the critical field. After
a little bit of manipulations, we get �c=� /2 and hxc=1. Ac-
tually, as discussed in Appendix B, such a critical field is
valid in the range of the parameter ��1 /4, which is preva-
lent in magnetic nanosystems with higher-order axial term.
Hence, we limit the ratio � between fourth-order and second-
order anisotropies to the range of value �B2�. Correspond-
ingly, we expect SC to be in the range of field

FIG. 1. Plots of the energy E�� ,	=0� �Eq. �22�� as a function of
� /� for hx=0.8, 0.9, and 1.0 at �=0.01. Note that the vertical scale
is adjusted to make the energy zero at the minimal position �m for
each hx, where �m is a solution of a cubic equation �A1� in sin �.
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1

4�1 − 3��
� hx � 1. �30�

B. Biased case

In this section, we apply the magnetic field in the xz plane
and take the ẑ axis as the initial easy axis where there is no
magnetic field. Then, we get the biased case in which the
reduced Hamiltonian with H=Hxx̂+Hzẑ is written as

E��,	 = 0� = − cos2 � − � cos4 � − 2hx sin � − 2hz cos � ,

�31�

where hz=g�BHz / �2DS�. In this situation the position of the
barrier, �0 satisfies the relation given by

hx = tan �0�cos �0 + hz + 2� cos3 �0� , �32�

from �dE�� ,0� /d���=�0
=0. Since hx depends on three quan-

tities, �0, hz, and �, it is necessary to find the range of �
determined by 0�hx�hxc for a given value of � and hz. In
order to do that, we first find the critical angle �c and the
critical field hc�=g�BHc / �2DS��. In the same way as we have
done in the previous section, we obtain the relations between
hc, and �c

sin�2�c� + 4� cos3 �c sin �c − 2hc sin��c + �H� = 0, �33�

cos�2�c� + 2��− 3 cos2 �c sin2 �c + cos4 �c�

− hc cos��c + �H� = 0, �34�

which correspond to

hc =
sin�2�c� + 4� cos3 �c sin �c

2 sin��c + �H�

=
cos�2�c� + 2��− 3 cos3 �c sin2 �c + cos4 �c�

2 cos��c + �H�
, �35�

where hxc=hc sin �H, hzc=−hc cos �H, and �H denotes the
angle between the magnetic field and −ẑ axis. Hence, as is
illustrated in Fig. 2, the range of �0 becomes

�c � �0 � �+, �36�

where �c comes from Eq. �35� for a given value of �H, and �+
from hx=0 in Eq. �32� which is expressed as

�+��,hz� = cos−1�− 62/3 + 61/3�− 9��hz + �6 + 81�hz
2�2/3

6���− 9��hz + �6 + 81�hz
2�1/3 	 .

�37�

In the case of �=0 we have �c=cos−1�hc cos �H�1/3 and �+

=cos−1�hc cos �H� with the critical field hc given by19

hc = �cos2/3 �H + sin2/3 �H�−3/2. �38�

Continuing in the present case as in the previous one, we
have the shift of the frequency


2 − 
0
2 =

1

24
�a�1

n

2

csc2 �0�12p1
2 + 4hx cot �0p2

+
hx csc �0p3p4

p5
− 3hx csc �0p6	 , �39�

where 
0 and the parameters pi’s �i=1,2 , . . . ,6� are given in
Appendix C. In this situation theoretical analysis becomes
cumbersome because the oscillation frequency depends on
four physical quantities, �, hx, hz, and �0. However, using
Eq. �32�, 
 is reduced to the function of three quantities.
Hence, �0 which gives 
=
0 in Eq. �39� can be numerically
calculated for a given value of � and hz, and the crossover
boundary between FC and SC in terms of hx and hz is deter-
mined by putting such �0 into Eq. �32�. As is shown in Fig. 3,

α

α

αα

θθ

θ

FIG. 2. �H dependence of �+ and �c for �=−0.1, 0, 0,1, and 0.2,
where �+ and �c correspond to hx=0, and hxc for a given value of
�H, respectively. Note that the dotted line at �=0 is for eye
guidance.

α

FIG. 3. Crossover diagram hx vs �hz� at �=0.1 obtained by the
numerical calculation for the truly axial symmetry. FC and SC in-
dicate the first- and the second-order crossover, respectively. Note
that �hzc�=1+2� at hxc=0.
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FC is greatly suppressed with increasing hx and hz. The re-
gion for the FC is enhanced with increasing � while it is
suppressed for ��0 �Fig. 4�. In this respect, such a higher-
order axial term plays an important role in shifting the cross-
over boundary.

To illustrate the above results with concrete numbers, we
choose A�10−6 K, and D�0.1 K, S�100 for typical mag-
netic nanomaterials, which results in ��0.1. Thus, in the
absence of the longitudinal field the crossover boundary oc-
curs at hx�0.357 from Eq. �27�, which is large compared
with hx=0.25 in the simple uniaxial symmetry.3 Also, in
comparison with the single-molecule magnets such as
Mn12-tBuAc with D=0.563 K, A=0.0012 K, and S=10,15

the regime for the FC becomes much larger in the limit of
S→�.�Fig. 5�

Before concluding, it will be meaningful to discuss what
the effect of the fourth-order off-diagonal terms21 such as
�C /2��S+

4 +S−
4� would be, where C is the fourth-order trans-

verse anisotropy constant. Considering such terms in previ-
ous formulation and introducing a parameter r�=2CS2 /D�,
we have found that the results with such terms have the same
tendency to the previously obtained results with a slight in-
crease in the crossover boundary for the typical value �0.01
���0.1�, while such terms can be neglected in the limit of
��0.01. Taking magnetic nanoparticle22 with C=2.8
�10−5 K �i.e., ��0.05�, for instance, the increase of the FC
regime is about 10%, and thereby the FC really becomes
more robust against external magnetic fields.

IV. CONCLUSION

We have studied quantum-classical crossover in magnetic
nanosystems with truly axial symmetry. We have presented
the crossover boundary which determines first-or second-
order crossover. The result is of interest theoretically and
experimentally in two respects. First, in the presence of the

higher-order axial term which is prevalent in nanomagnets,
the first-order regime is greatly suppressed or enhanced de-
pending on the sign of such a term whereas it is greatly
suppressed by the external magnetic field. In fact, the regime
for the first-order crossover is more reduced in the the trans-
verse field than in the longitudinal field. Thus, in order to
observe the sharp change of the escape rate around the cross-
over temperature, the magnitude of a transverse field should
be small or moderate, and the higher-order axial term should
be as large as possible. Second, since qualitative analysis
shows that �T /Tc�1 /S in the first-order crossover and 1 /�S
in the second-order one, we have �T /Tc�0.01 for the
former and 0.1 for the latter in case of S�100. In this re-
spect, the larger the spin, the more likely one is to see a
dramatic change of the escape rate in real experiments. These
make the magnetic nanosystem with a larger spin a good
candidate for the experimental study.
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APPENDIX A: BARRIER HEIGHT

The position of the minimum is determined by the equa-
tion

− 2� sin3 � + �1 + 2��sin � − hx cos 	 = 0, �A1�

originated from �E�� ,	� /��. Denoting the solution of Eq.
�A1� to be �m, the barrier height U is expressed as

FIG. 4. Crossover diagram h̄x�=hx /hxc� vs �h̄z��=�hz� /hzc� for
��=AS2 /D�=0.2, 0.1, 0, and −0.1. Note that the dotted line at �
=0 is for eye guidance. Inset: Critical field hxc vs �hzc� for a given
value of � where hxc

2/3+hzc
2/3=1 at �=0.

FIG. 5. Crossover boundary at �a� �=0.213 �S→��, �b� �=0
�S→��, �c� �=0.213 �S=10�, and �d� �=0 �S=10�, where the
physical quantities in �c� are taken from the sample Mn12-tBuAc
�Ref. 20�. Note that the first-order crossover is greatly enhanced
with increasing S.
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U = E�� =
�

2
,	
 − E��m,	�

= cos2 �m + � cos4 �m − 2hx cos 	�1 − sin �m� . �A2�

Noting that sin �m�1, the greatest reduction in the overall
barrier height comes from 	=0 for hx�0. Also, the same
argument is applied to the biased case. Hence, we keep 	
=0 in the whole discussion.

APPENDIX B: CRITICAL FIELD AND LIMITATION OF
THE HIGHER-ORDER AXIAL TERM

In order to find the critical field hxc in which the barrier
vanishes, we need to investigate the behavior of the energy
�22� around �=� /2. Plugging a new parameter � defined as
�=� /2+� into Eq. �22�, we have

E��,	 = 0� � − 2hx + �− 1 + hx��2 + �1

3
− � −

hx

12

�4

+ �−
2

45
+

2�

3
+

hx

360

�6 + ¯ . �B1�

To ensure that �=� /2 corresponds to the absolute minimum
of energy at hx=1, the coefficient of �4 should not be nega-
tive at hx=1. Accordingly, in order that hx=1 is a critical
field and �=� /2 is the absolute minimum, we have

� �
1

4
. �B2�

APPENDIX C: PARAMETERS IN THE BIASED CASE

The parameters for the crossover can be obtained by using
Eqs. �6�–�10�, and Eq. �31�:

A1 = 2 csc �0�hz cos �0 + �1 + ��cos�2�0� + � cos�4�0�

+ hx sin �0� , �C1�

A2 =
1

2
csc2 �0�− 3hz − 4�1 + ��cos �0 − hz cos�2�0�

− 6� cos�3�0� + 2� cos�5�0� − hx sin�2�0�� , �C2�

A3 = hx cot �0, �C3�

A4 =
1

12
csc3 �0�13 + 13� + 23hz cos �0 + �10 + 41��cos�2�0�

+ hz cos�3�0� + �1 − 13��cos�4�0� + 7� cos�6�0�

+ 9hx sin �0 + hx sin�3�0�� , �C4�

A5 = − hx csc2 �0, �C5�

B1 = − 2hx, B2 = 0, B3 =
hx

3
, B4 = 0, �C6�

which result in


0 = 2�hx csc �0p1/n , �C7�

p1 = hz cos �0 + �1 + ��cos�2�0� + � cos�4�0� + hx sin �0,

�C8�

p2 = 4hz + 5�1 + ��cos �0 + 2hz cos�2�0� + �1 + 8��cos�3�0�

− � cos�5�0� + 2hx sin�2�0� , �C9�

p3 = − 3hz − 4�1 + ��cos �0 − hz cos�2�0� − 6� cos�3�0�

+ 2� cos�5�0� − hx sin�2�0� , �C10�

p4 = − 8hz − 13�1 + ��cos �0 + 2hz cos�2�0� + 7 cos�3�0�

− 16� cos�3�0� + 17� cos�5�0� + 2hx sin�2�0� , �C11�

p5 = hz cos �0 + �1 + ��cos�2�0� + � cos�4�0� + hx sin �0,

�C12�

p6 = 13 + 13� + 19hz cos �0 + �6 + 37��cos�2�0�

+ hz cos�3�0� + �1 − 17��cos�4�0� + 7� cos�6�0�

+ 5hx sin �0 + hx sin�3�0� . �C13�

1 Quantum Tunneling of Magnetization-QTM’94 edited by L.
Gunther and B. Barbara �Kluwer Academic, Dordrecht, 1995�;
E. M. Chudnovsky and J. Tejada, Macroscopic Quantum Tun-
neling of the Magnetic Moment �Cambridge University Press,
New York, 1998�; D. Gatteschi, R. Sessoli, and J. Villain, Mo-
lecular Nanomagnets �Oxford University Press, New York,
2006�.

2 E. M. Chudnovsky, Phys. Rev. A 46, 8011 �1992�.
3 E. M. Chudnovsky and D. A. Garanin, Phys. Rev. Lett. 79, 4469

�1997�.
4 D. A. Garanin, X. Martínez Hidalgo, and E. M. Chudnovsky,

Phys. Rev. B 57, 13639 �1998�.
5 J.-Q. Liang, H. J. W. Müller-Kirsten, D.-K. Park, and F. Zimmer-

schied, Phys. Rev. Lett. 81, 216 �1998�.
6 G.-H. Kim, Phys. Rev. B 59, 11847 �1999�; J. Appl. Phys. 86,

1062 �1999�.
7 H. J. W. Müller-Kirsten, D. K. Park, and J. M. S. Rana, Phys.

Rev. B 60, 6662 �1999�.
8 C.-S. Park, S.-K. Yoo, and D.-H. Yoon, Phys. Rev. B 61, 11618

�2000�.
9 T. Choi and G.-H. Kim, Physica B 291, 219 �2000�.

10 X. Martínes Hidalgo and E. M. Chudnovsky, J. Phys.: Condens.
Matter 12, 4243 �2000�.

11 G.-H. Kim and E. M. Chudnovsky, Europhys. Lett. 52, 681
�2000�.

12 D. A. Garanin and E. M. Chudnovsky, Phys. Rev. B 63, 024418

GWANG-HEE KIM PHYSICAL REVIEW B 77, 104405 �2008�

104405-6



�2000�.
13 K. M. Mertes, Y. Zhong, M. P. Sarachik, Y. Paltiel, H. Shtrikman,

E. Zeldov, E. Rumgerger, and D. N. Hendrickson, Europhys.
Lett. 55, 874 �2001�.

14 W. Wernsdorfer and R. Sessoli, Science 284, 133 �1999�; E.
Kececioglu and A. Garg, Phys. Rev. Lett. 88, 237205 �2002�.

15 W. Wernsdorfer, M. Murugesu, and G. Christou, Phys. Rev. Lett.
96, 057208 �2006�.

16 D. H. Kang and G.-H. Kim, Phys. Rev. B 74, 184418 �2006�.
17 G.-H. Kim, Phys. Rev. B 67, 144413 �2003�; J. Phys.: Condens.

Matter 14, 849 �2002�; Phys. Rev. B 62, 8626 �2000�; Euro-
phys. Lett. 51, 216 �2000�.

18 Even though our discussion is focused on magnetic nanosystems
with truly axial symmetry, there might be contributions from the
fourth-order off-diagonal terms. Later, we will discuss how
much such terms make an effect on the crossover phenomena.

19 H. Pfeiffer, Phys. Status Solidi A 122, 377 �1990�; 118, 295

�1990�; W. T. Coffey, D. S. F. Crothers, J. L. Dormann, L. J.
Geoghegan, Yu. P. Kalmykov, J. T. Waldron, A. W. Wickstead,
Phys. Rev. B 52, 15951 �1995�; M.-Carmen Miguel and E. M.
Chudnovsky, Phys. Rev. B 54, 388 �1996�; G.-H. Kim and D.-S.
Hwang, Phys. Rev. B 55, 8918 �1997�.

20 D. H. Kang and G.-H. Kim, J. Magn. Magn. Mater. 310, e498
�2007�.

21 F. Hartmann-Boutron, J. Phys. I 5, 1281 �1995�; F. Hartmann-
Boutron, P. Politi, and J. Villain, Int. J. Mod. Phys. A 10, 2577
�1996�; F. Luis, J. Bartolome, and J. F. Fernandez, Phys. Rev. B
57, 505 �1998�; R. Caciuffo, G. Amoretti, A. Murani, R. Sessoli,
A. Caneschi, and D. Gatteschi, Phys. Rev. Lett. 81, 4744
�1998�; I. Mirebeau, M. Hennion, H. Casalta, H. Andres, H. U.
Güdel, A. V. Irodova, and A. Caneschi, ibid. 83, 628 �1999�.

22 S. Hill, N. Anderson, A. Wilson, S. Takahashi, N. E. Chakov, M.
Murugesu, J. M. North, N. S. Dalal, and G. Christou, J. Appl.
Phys. 97, 10M510 �2005�.

QUANTUM-CLASSICAL CROSSOVER OF THE ESCAPE… PHYSICAL REVIEW B 77, 104405 �2008�

104405-7


